
On Robust Trimming of Bayesian Network Classifiers

YooJung Choi and Guy Van den Broeck

Computer Science Department

University of California, Los Angeles

{yjchoi, guyvdb}@cs.ucla.edu

Abstract

This paper considers the problem of removing costly
features from a Bayesian network classifier. We
want the classifier to be robust to these changes, and
maintain its classification behavior. To this end, we
propose a closeness metric between Bayesian clas-
sifiers, called the expected classification agreement
(ECA). Our corresponding trimming algorithm finds
an optimal subset of features and a new classification
threshold that maximize the expected agreement,
subject to a budgetary constraint. It utilizes new
theoretical insights to perform branch-and-bound
search in the space of feature sets, while computing
bounds on the ECA. Our experiments investigate
both the runtime cost of trimming and its effect on
the robustness and accuracy of the final classifier.

1 Introduction

Bayesian classification plays a prominent role throughout
machine learning [Wu et al., 2008; Laidlaw et al., 1998;
Metsis et al., 2006]. In this setting, one has a model that
specifies a probability distribution Pr over a set of vari-
ables, including class variable C and attributes or features
F = {F1, . . . , Fn}. Given a particular instance, described as
an assignment to features f = {f1, . . . , fn}, this model is used
to compute the posterior probability Pr(C|f1, . . . , fn) which
is then compared against a threshold T to classify the instance.

In practice, observing features often has a cost, and one
typically needs to keep it within a given budget. For ex-
ample, features in a medical diagnosis may be invasive,
time-consuming, or expensive medical tests [Kononenko,
2001]. Similar issues arise in active sensing [Gao and Koller,
2011], adaptive testing [Millán and Pérez-De-La-Cruz, 2002;
Munie and Shoham, 2008], and robotics [Kollar and Roy,
2008]. This problem has been studied from different angles,
often under the umbrella of feature selection. For example,
one may select features at learning time based on their rele-
vance, redundancy, or classification accuracy [Kira and Ren-
dell, 1992; Yu and Liu, 2004]. Alternatively, features may be
selected at prediction time based on their expected misclas-
sification cost or information gain [Bilgic and Getoor, 2011;
Krause and Guestrin, 2009; Zhang and Ji, 2010]. Such prob-

C

T = 0.07

Q1 Q2 Q3

Pr(C=+)

0.1

C Pr(Q1=+|C)

+ 0.9
− 0.3

C Pr(Q2=+|C)

+ 0.9
− 0.6

C Pr(Q3=+|C)

+ 0.4
− 0.2

Figure 1: Naive Bayes classifier for a quiz scenario where answers
on Q = {Q1, Q2, Q3} (features) depend on knowledge C (class)

abilistic objectives are computed on the distribution of the
Bayesian classifier.

This paper approaches the problem from a different perspec-
tive, which we call classifier trimming. In addition to selecting
features that fit the budget, trimming adjusts the threshold
T to induce a new classifier. Moreover, instead of simply
optimizing the predictive accuracy, we want trimming to be
robust. That is, we want to preserve the original classifier’s
general behavior. Our motivation is two-fold. First, Bayesian
classifiers often incorporate significant expert knowledge in
the form of priors, structural assumptions, and choice of distri-
bution class [Lucas, 2001]. This is particularly true in medical
applications where data is scarce [Bellazzi and Zupan, 2008].
Second, two classifiers with the same predictive quality can
exhibit vastly different behavior and failure modes. For exam-
ple, Zhao et al. [2017] describe two classifiers with a similar
accuracy, but markedly different amounts of gender bias in
their predictions. In either scenario, it is essential to retain the
desired behavior of the original classifier during trimming.

Figure 1 depicts a classifier utilizing three features Q =
{Q1, Q2, Q3} with a threshold of T = 0.07. Consider two
possible trimmings of this classifier: one obtained by remov-
ing Q2 and adjusting the threshold to 0.10, the other with Q1

removed and the threshold changed to 0.30. The trimmed
classifiers are clearly less expensive than the original one, but
how do we quantitatively compare and choose between these
trimmings? To answer this question, we introduce the notion
of expected classification agreement (ECA). It is an expecta-
tion of the two classifiers agreeing on instances, measuring
how much behavior from the original classifier is preserved.

Probabilistic graphical models, such as Bayesian networks,
are often used to represent the Bayesian classifier’s distribu-



tion. We propose an algorithm to find the best trimming of a
Bayesian network classifier subject to a budgetary constraint.
The algorithm selects features and chooses a new classifica-
tion threshold in order to maximize the ECA. We also propose
a specialized algorithm for the case of naive Bayes classi-
fiers [Friedman et al., 1997; Cheng and Greiner, 1999] that
exploits the naive Bayes independence assumptions for more
efficient trimming. These novel trimming algorithms are based
on the following progression of ideas. First, we show how
an existing compilation algorithm to compute expected same-
decision probability (E-SDP) can be modified to compute the
ECA between a classifier and its trimming [Choi et al., 2017].
This objective was previously used for feature selection where
the classification threshold remains fixed [Chen et al., 2015].
Second, we propose an upper bound on the ECA that can
be computed more efficiently, enabled by our formulation
that adjusts the threshold. Lastly, we use this upper bound to
effectively trim classifiers with branch-and-bound search.

Finally, with evaluation on real-world data, we show that
our approach finds robust trimmings and demonstrate the rela-
tionship between robustness and accuracy. We also illustrate
the importance of optimizing the threshold for both classifica-
tion similarity and efficiency of search. Moreover, we show
that our trimming approach consistently returns a classifier
that is significantly more similar to the original classifier than
selecting features based on information gain.

2 Expected Classification Agreement

We use the standard notation where variables are denoted
by upper case letters (X) and their instantiations by lower
case letters (x). Sets of variables are denoted in bold upper
case (X) and their joint instantiations in bold lower case (x).
Concatenations of sets (XY) represent their union.

A binary Bayesian classifier is a tuple α = (C,F, T ), where
C is a binary class variable, F are (possibly multi-valued) fea-
tures, and T is a threshold. On a joint probability distribution
Pr(.) over variables C and F, the classification function is

CT (f) =

{

c, ifPr(c | f) ≥ T

c, otherwise.

For example, with a threshold of 0.5, an instance will be clas-
sified into the more probable class after observing its features.

Next, we motivate and define our proposed closeness mea-
sure between classifiers, quantifying their expected agreement.

2.1 Example and Motivation

Consider again the scenario shown in Figure 1, where an
instructor uses a quiz to test students’ knowledge. The quiz
contains three independent questions: Q1 is strongly indicative
of being knowledgeable, Q2 is an easy question, and Q3 is a
hard question (only 40% of the knowledgeable students answer
it correctly). The subject of this quiz is quite difficult, and
only 10% of the students are expected to master it, as reflected
by the prior on class variable C. Hence, the instructor sets a
lenient threshold of T = 0.07 to avoid failing students who
may have grasped the subject.

According to this classifier, a student will pass the quiz
precisely when their answer matches one of the following

three (out of eight) outcomes: {Q1 =+, Q2 =+, Q3 =+},
{Q1=+, Q2=+, Q3=−}, and {Q1=+, Q2=−, Q3=+}.
Moreover, the probability of seeing one of these outcomes
is 32%: the fraction of students that are expected to pass the
quiz. Suppose now that we drop questions Q1 and Q2, relying
solely on question Q3 to evaluate students (using the same
threshold). Since Pr(C = + | Q3) is always greater than
T = 0.07, all students will pass the quiz, completely ignoring
the test results. Alternatively, we can make more intuitive use
of the test question and pass only the students who answered
Q3 correctly. This is equivalent to comparing Pr(C=+ |Q3)
against a new threshold of T = 0.15. Using this new threshold,
we will now obtain the same student assessment on five test
outcomes,1 whose probabilities add up to 75%. This is the
expected classification agreement (ECA). In particular, we
say that the two classifiers α = (C, {Q1, Q2, Q3}, 0.07) and
β = (C, {Q3}, 0.15) have an ECA of 75%.

2.2 Formalization

We now formalize the notion of ECA and classifier trimming.

Definition 1 Let α = (C,F, T ) be a Bayesian classifier using
distribution Pr(.). The classifier β = (C,F′, T ′) is a trim-
ming of α if it uses the same class variable C and distribution
Pr(.) as α, and a subset of its features (i.e., F′ ⊂ F).

Definition 2 Let α = (C,F, T ) be a Bayesian classifier and
let β = (C,F′, T ′) be one of its trimmings. The expected
classification agreement (ECA) between these classifiers is:

ECA(α, β) =
∑

f

[CT (f) = CT ′(f ′)] · Pr(f).

Here, f ′ is the subset of instantiation f pertaining to variables
in F′, and [.] is an indicator function (evaluates to 1 when its
argument is true and to 0 otherwise).

Section 1 asks to compare trimmings of classifier α in Figure 1.
The first trimming has ECA(α, (C, {Q1, Q3}, 0.10)) = 91%
while the second has ECA(α, (C, {Q2, Q3}, 0.30)) = 68%.

We are now ready to define the classifier trimming problem
more formally. The input to this problem is a binary Bayesian
classifier α = (C,F, T ), a positive cost for each feature in F,
and a budget B. The output is a subset of features F? ⊆ F
whose sum of costs is at most B and a threshold T ?, leading
to a trimmed classifier β? = (C,F?, T ?) that maximizes the
ECA with α:

β? = argmax
β

ECA(α, β).

In other words, we wish to find a solution to the following
optimization problem:

ECA? = max
F′⊆F

max
T ′

ECA(α, (C,F′, T ′))

s.t.
∑

F ′∈F′

cost(F ′) ≤ B

This problem can alternatively be described as feature sub-
set selection using the following criterion.

1The two classifiers will disagree on {Q1=+, Q2=+, Q3=−},
{Q1=−, Q2=+, Q3=+} and {Q1=−, Q2=−, Q3=+}.



{}
{}

{F1}
{}

{F1, F2}
{}

MAA = 0.9
Update M?

{F1}
{F2}

0.98 > M?

{F1, F3}
{F2}

MAA = 0.97
Update M?

{F1}
{F2, F3}

MAA = 0.9

{}
{F1}

0.95 < M?

Figure 2: Branch-and-Bound search tree to select a subset with
budget B = 1.5 among features {F1, F2, F3, F4} with costs
{0.5, 1.0, 1.0, 2.0} respectively. Every node contains a set of in-
cluded features and a set of excluded features.

Algorithm 1 ECA-TRIM(I,E, b)

Input:
α : Bayesian classifier (C,F, T ); B : budget
Data:
I← ∅, E← ∅: set of included/excluded features
b← B: remaining budget
F?,M?, T ? : optimal subset, MAA value, and threshold
Output: Optimal trimmed classifier β? = (C,F?, T ?)

1: if b ≥ 0 then
2: (m,Tm)← MAA(I)
3: if m > M? then M? ← m; F? ← I; T ? ← Tm

4: if minF∈F\(I∪E) cost(F ) ≤ b then

5: m← UB(F \E)
6: if m ≤M? then return

7: F ← a feature from F \ (I ∪E)
8: ECA-TRIM

(

I ∪ {F},E, b− cost(F )
)

9: ECA-TRIM
(

I,E ∪ {F}, b
)

Definition 3 Let α = (C,F, T ) be a Bayesian classifier. The
maximum achievable agreement (MAA) for feature subset
F′ ⊆ F is defined as:

MAAα(F
′) = max

T ′

ECA(α, (C,F′, T ′)).

The MAAα(F
′) corresponds to the maximum ECA that is

achievable by a trimmed classifier with features F′. Hence,
the classifier trimming problem reduces to searching for the
subset of features that fits within the budget and maximizes the
MAA. We will drop the subscript α when clear from context.

3 Searching for an Optimal Trimming

In this section, we describe our approach to search for an opti-
mal trimming of Bayesian classifiers, or equivalently, selecting
a feature subset with optimal MAA.2 Our approach is based
on a branch-and-bound search algorithm similar to Narendra

2Code available at
https://github.com/UCLA-StarAI/TrimBN.

and Fukunaga [1977] and Kolesar [1967]. As shown in Al-
gorithm 1, we run a depth-first search through a binary tree
where each node is branched into two nodes: one that includes
and one that excludes a feature. Each node then represents the
set of features that are included by the path from the root to
that node. The algorithm computes the MAA at each node if
the represented feature subset fits within the budget, keeping
track of the best subset and its MAA at each point in search,
as in Lines 1–3. In particular, this means that we compute the
MAA even if the subset does not exhaust the budget, because
MAA does not necessarily increase as the subset size grows.

The essence of the algorithm is pruning subtrees without
affecting the optimality of the solution. That is, the algo-
rithm finds the optimal solution without generating the full
binary tree. Suppose given any node, we know the largest
value of MAA that its descendants can achieve (UB). Then we
can safely prune the subtree rooted at that node if the bound
does not exceed the current best score. This correspond to
backtracking the search, as shown in Line 6 in Algorithm 1.
Formally, let E be the set of features that were excluded by
the path to a certain node. Each descendant node will then
represent a subset of F \ E. Hence, if we can compute an
upper bound on MAA for all subsets of F \ E, then we can
successfully prune intermediate nodes in the search tree.

Figure 2 illustrates an example search execution. The tree
is traversed depth-first, from left to right. If a node represents
a feature subset within budget, its MAA is computed, and the
score M? is updated accordingly. Otherwise, the upper bound
is computed and compared against the current best value. For
example, we backtrack the search after excluding F1, because
the upper bound on MAA for subsets of {F2, F3, F4} is 0.95
which is smaller than the current M? = 0.97. Note that this
particular subset has a cost of 4.0 and does not fit within the
budget, but we still compute the bound on it for pruning. That
is, the algorithm computes the upper bound on MAA of the set
F \E and it subsets, even if their cost may exceed the budget.
We will later show experimentally that the pruning of subtrees
makes these extra computations worthwhile.

4 Maximum Potential Agreement

We now introduce an upper bound for the MAA and show how
it can be used in the search for an optimal trimming.

Definition 4 Consider a Bayesian classifier α = (C,F, T ) .
Let F′ ⊆ F be a subset of its features, and let R = F \ F′.
The maximum potential agreement (MPA) is

MPAα(F
′) =

∑

f ′

max
c

{

∑

r

[CT (f
′r) = c] · Pr(f ′r)

}

.

Intuitively, the MPA is the expected agreement between a
Bayesian classifier α and a hypothetical classifier γ that clas-
sifies an instance f ′ into the class that is more likely after ob-
serving the remaining features in R. Note that such classifier
γ is not a Bayesian classifier as it does not test the posterior
Pr(c | f ′) against a threshold. However, the MPA is still a
useful computational tool due to its relationship to the MAA.

Proposition 1 The MPA is an upper bound on the MAA:
MAAα(F

′) ≤ MPAα(F
′).



In addition, the MPA is monotonically increasing, a property
that we utilize later in the proposed algorithms.

Proposition 2 For any F1⊆F2, MPAα(F1) ≤ MPAα(F2).

These two propositions together imply that the MPA of F′

also upper-bounds the MAA of all subsets of F′.

Corollary 1 For any F1 ⊆ F2, MAAα(F1) ≤ MPAα(F2).

Therefore, we can use the MPA as an upper bound on the
MAA of a node’s descendants in the branch-and-bound search
algorithm for optimal trimming.

Lastly, we provide an observation that leads to a computa-
tional gain, especially in the case of naive Bayes models.

Proposition 3 If features F′ and F\F′ are independent given
the class C, then MAAα(F

′) = MPAα(F
′).

The above property is useful because it is generally easier to
compute MPA(F′) than MAA(F′), as we can maximize each
instantiation f ′ separately. Moreover, in naive Bayes models,
the quantity MAA that we wish to optimize is now monotonic.
Thus, we need to compute this quantity only for those subsets
that exhaust the budget, instead of every subset that fits within
budget. Detailed proofs of above propositions can be found in
the appendix.

5 Probabilistic Reasoning Algorithms

In this section, we first introduce the notion of same-decision
probability and formalize its connection to the ECA. We then
describe our proposed algorithms to compute the MPA and
the MAA that exploit this connection.

5.1 Same-Decision Probability and ECA

Suppose we make a decision based on whether Pr(c | e) ≥ T ,
where e is the evidence collected thus far. We may ask whether
to collect more evidence or to commit to the current decision.
The same-decision probability (SDP) was introduced as a so-
lution to this stopping problem [Choi et al., 2012]. It measures
how likely we are to keep our current decision even after
observing more variables X, and is defined as follows.

Definition 5 Consider a Bayesian classifier (C,F, T ) where
F includes disjoint sets of features E and X. The same-
decision probability (SDP) for X given e is defined as

SDPC,T (X | e) =
∑

x

[CT (xe) = CT (e)] · Pr(x | e).

A high SDP encourages one to stop collecting information
and commit to the current decision, while a low SDP suggests
otherwise. In the latter case, SDP also provides a solution
to deciding which observations to collect next. In particular,
observing a subset of variables Y in X that maximizes the
expected SDP (E-SDP) will lead to the most robust decision
in expectation. Hence, such subset maximally eliminates the
need for further observations. This is formalized as follows.

Definition 6 Consider a Bayesian classifier (C,F, T ) where
F includes disjoint sets of features E, Y and Z. The expected

same-decision probability for Z given Y and e is defined as

SDPC,T (Z |Y, e) =
∑

y

SDPC,T (Z | ye) · Pr(y | e)

=
∑

yz

[CT (yze) = CT (ye)] · Pr(yz | e). (1)

While the ECA and E-SDP are conceptually different no-
tions motivated by different considerations, they are quite sim-
ilar computationally as they are both expectations. The ECA
is equivalent to a variant of E-SDP (denoted SDPC,T,T ′ ) that
uses two thresholds instead of one, by replacing the indicator
term in Equation 1 with [CT (yze) = CT ′(ye)].

Proposition 4 Let α = (C,F, T ) be a Bayesian classifier
and let β = (C,F′, T ′) be one of its trimmings. We then have

ECA(α, β) = SDPC,T,T ′((F \ F′) | F′),

where the expected SDP is computed w.r.t. classifier α.

Therefore, one can utilize an E-SDP algorithm to compute
ECA during classifier trimming. For example, the E-SDP
algorithm by Choi et al. [2017] can be modified to evaluate the
above variant of E-SDP without extra computational overhead.

5.2 Computing the MPA

We now describe how we compute the MPA at each search
step. First, the MPA can be expressed as follows:

MPA(F′) =
∑

f ′

max
(

SDPC,T,0(R|f
′),

1− SDPC,T,0(R|f
′)
)

· Pr(f ′). (2)

Here, SDPC,T,0(R|f
′) is the expected probability that we will

decide positive class if we observe features R given f ′. Then
1 − SDPC,T,0(R|f

′) is its complement: the expected proba-
bility of negative classification. Exploiting this connection to
SDP, our algorithm makes heavy use of the E-SDP algorithm
by Choi et al. [2017], of which we provide a high-level de-
scription here and refer to the original paper for details. The
algorithm is based on compiling a Bayesian network into a
tractable circuit representation, called a Sentential Decision
Diagram (SDD) [Darwiche, 2011]. Even though compiling the
circuit is computationally heavy in general, computing the E-
SDP and hence the MPA is efficient once we have successfully
compiled the circuit. Moreover, we can sometimes efficiently
compile certain networks (e.g. high treewidth) in which tra-
ditional inference techniques become infeasible [Choi et al.,
2013]. As a part of the process to compute SDPC,T (R | F

′),
the E-SDP algorithm calculates and saves the values Pr(f ′)
and SDPC,T,0(R | f

′) for each f ′. Given these values, com-
puting the MPA for F′ is a straightforward evaluation of Equa-
tion 2.

With the ability to compute the MPA, we can now search for
optimal trimmings of naive Bayes classifiers. The condition
in Proposition 3 holds for all feature subsets of a naive Bayes
model, and thus the MAA of a subset is always equal to
its MPA. An optimal trimming is then found as shown in
Algorithm 1 where both the upper bound and value of MAA
are computed using the MPA algorithm described before.



Algorithm 2 COMPUTE-MAA

Input:
α : Bayesian network classifier (C,F, T ); F′ ⊂ F
Data:
CPR(i)← Pr(c | f ′i) for all i
MAR(i)← Pr(f ′i) for all i
POS(i)← SDPC,T,0((F \ F

′) | f ′i) for all i
Output: The score MAA(F′) and the optimal threshold T ′

1: Sort instances f ′i in nondecreasing order of CPR(i)
2: m←

∑

i POS(i) ·MAR(i); m? ← m
3: t? ← [0,CPR(1)]
4: for i in 1, 2, . . . do
5: m← m−MAR(i) · (2POS(i)− 1)
6: if m > m? then
7: m? ← m; t? ← (CPR(i),CPR(i+ 1)]

8: return MAA(F′) = m? and any T ′ ∈ t?

5.3 Computing the MAA

Searching for an optimal trimming of arbitrary Bayesian net-
work classifiers requires the computation of MAA, which
involves tuning the trimmed classifier’s threshold to maximize
the ECA. First, we utilize the observation that a change in
threshold affects the value of ECA only if the class probability
given some instance lies on a different side of the threshold
after the change. For example, recall the trimmed classifier
using only Q3 from the quiz example in Section 2. We showed
that a threshold of 0.15 will result in passing only the students
who answered Q3 correctly. In fact, any threshold between
Pr(C =+|Q3 =−) = 0.08 and Pr(C =+|Q3 =+) = 0.18
results in the same behavior and hence the same ECA. There-
fore, the number of threshold values we need to consider is
finite and in fact linear in the number of possible instances f ′.

To compute the MAA using this observation, we first ex-
press the ECA as the following:

ECA(α, β) =
∑

f ′:Pr(c|f ′)≥T ′

SDPC,T,0(R | f
′) · Pr(f ′)

+
∑

f ′:Pr(c|f ′)<T ′

(

1− SDPC,T,0(R | f
′)
)

· Pr(f ′). (3)

Then we can compute the ECA for any given threshold T ′ if
we have the values of Pr(c | f ′), Pr(f ′), and SDPC,T,0(R | f

′)
for each instance f ′, which we can indeed easily obtain from
an execution of the E-SDP algorithm for SDPC,T (R | F

′).
Algorithm 2 shows the pseudocode to compute the MAA

and the optimal threshold given these values from the E-SDP
algorithm as inputs. Starting from T ′ = 0, the threshold is
repeatedly incremented to just above the next lowest class
probability given some feature instance f ′. With each thresh-
old change, the ECA value is also updated by subtracting
the expected probability of positive classification given that
instance and adding the complement of it, weighted by the
marginal probability of that instance, as in Line 5. In other
words, that instance f ′ is moved from the first sum to the sec-
ond in Equation 3. At the end, the highest value of ECA and
its corresponding threshold is reported.

F1 C

F2 F3

Pr(F1=+)

0.9

Pr(C=+)

0.6

C F1 Pr(F2=+|CF1)

+ + 0.6
+ − 1.0
− + 0.4
− − 0.5

C F2 Pr(F3=+|CF2)

+ + 0.4
+ − 1.0
− + 1.0
− − 0.4

Figure 3: A Bayes net over features {F1, F2, F3} and class C.

{F1, F2} Pr(c | F1F2) + class pr. − class pr.

{−,+} 0.75 0.04 0.04
{+,+} 0.69 0.20 0.27
{+,−} 0.50 0.30 0.13

{−,−} 0.00 0.00 0.02

Table 4: Table to calculate the MAA({F1, F2})

Table 4 offers a visualization of the algorithm. Here, we
wish to compute MAA({F1, F2}) with respect to the Bayesian
network classifier α = (C, {F1, F2, F3}, 0.55) in Figure 3.
Each table row corresponds to a feature instance, sorted by
the class probability. We consider five different cutoff points,
and the ECA value at each cutoff point is the sum of expected
probability of positive class for instances above the line and
the expected probability of negative class below the line. In
this case, MAA({F1, F2}) = 0.56 with the optimal threshold
T ? ∈ (0, 0.50], indicated by a dotted line in the table.

5.4 Complexity

Our proposed MPA and MAA algorithms, as described so
far, appear to consider all possible feature instances, which is
exponential in the size of the feature subset. Nevertheless, this
can be improved by exploiting context-specific independence,
a property having to do with the parameters of the classifier’s
probability distribution [Boutilier et al., 1996]. In particular,
suppose given a context g (where G ⊆ F′), the remaining fea-
tures F′\G become independent of the class variable. Then in
our MPA and MAA calculations, we only need to consider the
context g instead of individually considering all instances of
F′ that share this partial instantiation. The E-SDP algorithm
by Choi et al. [2017] that we utilize is based on SDD com-
pilation, which exploits some context-specific independence
to simplify the circuit.3 However, this is currently limited to
certain cases, such as when some features have uniform param-
eters given a context, and does not exploit all simplification
opportunities described above. Hence, compilation that fully
exploits context-specific independence is an interesting future
direction to further improve the efficiency of our algorithms.

3We refer to Chavira and Darwiche [2008] and Choi et al. [2013]

for more details on this simplification.



0.6 0.65 0.7 0.75

0.7

0.8

0.9

Average Accuracy

E
C

A
Feasible F′

Optimal ECA

Optimal Accuracy

(a) ECA and average accuracy for pima

0.5 0.6 0.7 0.8

0.6

0.8

Average Accuracy

E
C

A

Feasible F′

Optimal ECA

Optimal Accuracy

(b) ECA and average accuracy for heart

Agreement Accuracy

pima
Opt. ECA 0.9863 0.7123
Opt. Acc. 0.9452 0.7260

heart
Opt. ECA 0.9245 0.8491
Opt. Acc. 0.9057 0.7925

(c) Test agreement and accuracy

Figure 5: (a),(b) ECA and average accuracy achieved by feasible feature subsets. (c) evaluation of subsets with highest ECA and accuracy.

6 Experimental Evaluation

We now empirically evaluate our proposed algorithms on sev-
eral naive Bayes and general Bayesian network benchmarks.

6.1 Accuracy vs. Agreement

We evaluate our method on real-world datasets from the UCI
repository [Bache and Lichman, 2013], BFC (http://www.
berkeleyfreeclinic.org/), and CRESST (http://
www.cse.ucla.edu/). We randomly split each dataset
into 80/20 train and test sets and learn a naive Bayes classifier
using the training set. With the budget set as half the number
of features and threshold as 0.5, we compute the ECA of each
feasible feature subset. In addition, we compute the average
classification accuracy of each feature subset using 10-fold
cross validation on the training set.

Figure 5 shows the ECA and average accuracy achieved by
each feasible subset, and the subsets with highest ECA and
highest accuracy are highlighted. We can see that optimizing
the ECA tends towards higher accuracy. More interestingly,
we can observe a Pareto frontier where one cannot increase
the ECA without sacrificing average accuracy, and vice versa.
This suggests that one may need to make a tradeoff between
classifier agreement (i.e., robustness) and accuracy when se-
lecting features. Moreover, we evaluate the subsets with high-
est ECA and accuracy on the test set and report their empirical
classification agreement and accuracy in Figure 5c. The sub-
set chosen for optimal ECA on the training set also achieves
high classification agreement on the test set. Surprisingly, on
network heart, it also achieves higher test accuracy than
the subset with the highest average cross-validation accuracy
on the training set. A possible explanation is that choosing
subsets based on their cross-validation classification accuracy
does not generalize well to the test set. It may introduce addi-
tional overfitting that ECA does not suffer from: if the original
model generalizes well, we also expect our trimmed classifier
to generalize well. We also evaluated accuracy and agreement
of feature selection by information gain, but it neither outper-
formed optimizing the ECA nor the average cross-validation
accuracy. In addition, our method achieves higher accuracy on
most splits of the heart data, which suggests that this may
be a property of the dataset. In particular, the average cross-
validation accuracy of the original full classifier for pima was
approximately 0.720, which was lower than the average accu-
racy of about 21% of the candidate subsets. As our method

FS-SDD ECA-TRIM

|F| Time # Eval Time # Eval
(

n

m

)

bupa 6 0.044 21 0.026 14 15
pima 8 0.056 36 0.039 45 28
ident 9 0.128 129 0.097 89 84
anatomy 12 2.252 793 1.085 283 495
heart 13 7.346 1092 2.234 209 715
voting 16 819.163 6884 407.571 3345 4368

hepatitis 19 Timeout 43795 4390.71 2208 27132

Table 6: Runtime in seconds and number of criteria evaluations

optimizes for agreement with this original classifier, which has
relatively low accuracy, the resulting trimming may have lower
accuracy than if we were to actively optimize for average ac-
curacy. On the other hand, the original classifier for heart
had average accuracy 0.866, which was lower than only 2%
of the candidate subsets. Hence, in this case, optimizing the
ECA to closely mimic the original classifier’s behavior also
results in relatively high classification accuracy.

6.2 Runtime

We also compare the efficiency of our algorithm against FS-
SDD, which is the feature selection algorithm based on E-
SDP [Choi et al., 2017]. Each naive Bayes classifier was
trimmed with the budget set to 1/3 the number of features,
each feature given unit cost, and classification thresholds in
{0.1, 0.2, . . . , 0.9}. Table 6 shows the average running times
in seconds and the number of times each algorithm computes
the criterion value. The performance of our method is com-
parable to that of FS-SDD on smaller classifiers, and more
efficient for larger ones. In particular, our algorithm could han-
dle the largest network with around 4000 ECA computations,
whereas an exhaustive search method by FS-SDD requires a
significantly greater number of computations and could not
be run to completion. Moreover, in 16% of experiment in-
stances described above, the trimmed classifier with optimized
threshold reported higher classification similarity (measured
by the ECA) than the classifier using features selected by FS-
SDD, which keeps the threshold fixed. Note that our method
optimizes the threshold of the trimmed classifier and thus is
theoretically guaranteed to achieve classification similarity
(measured by the ECA) no lower than feature selection us-
ing E-SDP. Hence, threshold optimization allows us to find
more robust trimmings more efficiently. We also show the



0.2 0.4 0.6 0.8
0.9

0.92

0.94

0.96

0.98

1

Threshold

E
C

A

Trim

IG

(a) alarm

0.2 0.4 0.6 0.8
0.9

0.92

0.94

0.96

0.98

1

Threshold

E
C

A

Trim

IG

(b) win95pts

0.2 0.4 0.6 0.8
0.94

0.96

0.98

1

Threshold

E
C

A

Trim

IG

(c) mammography

Figure 7: Comparing ECA of features selected by classifier trimming and information gain

total number of subsets within budget,
(

n

m

)

, to illustrate that
branch-and-bound algorithms tend to require fewer number of
evaluations than exhaustive search as the number of features
increase. This justifies the extra MPA calculations done for
pruning on subsets larger than the budget.

6.3 Trimming General Networks

Next, we evaluate the quality of trimmed classifiers on gen-
eral Bayesian networks from the UAI 2008 evaluation and
a tree-augmented naive Bayes model for mammography re-
ports [Gimenez et al., 2014]. We run our method with T in
{0.1, 0.2, . . . , 0.9} and the budget set to 1/3 the number of fea-
tures. For the UAI networks, we randomly chose a root node
to be the class variable and used the set of all leaf nodes as the
feature set F. Each setting was repeated for three randomly
selected class variables. For the mammography network, we
used the (root) decision node as the class variable and chose
17 out of the 20 variables to be the feature set. Training data
was not available for these networks, so we compare against
feature selection by information gain instead of classification
accuracy. Figure 7 highlights the results. The trimmed clas-
sifier by our algorithm consistently achieves higher expected
classification agreement, demonstrating that robustness is not
easily achieved by other feature selection methods. We also
want to stress that the features selected using information gain
differ for different class variables, but stay the same across
different initial threshold values. On the other hand, our al-
gorithm is sensitive to the original threshold, and thus results
in trimmed classifiers with similar behavior as the original
classifier with a particular threshold.

7 Conclusion

This paper developed a novel operator on Bayesian classifiers:
to trim the set of features to fit within a budget, while simulta-
neously adjusting the classification threshold. Our objective
was to optimize the expected classification agreement between
the original classifier and its trimmed counterpart. By analyz-
ing the properties of classifier agreement and its maximum
potential agreement, we developed a branch-and-bound search
algorithm to find optimal trimmings. Experiments on naive
and general Bayesian networks demonstrated the effectiveness
of our approach in finding robust trimmings of classifiers, es-
pecially compared to optimizing more traditional objectives
such as expected SDP and information gain.

Acknowledgments

The authors wish to thank Adnan Darwiche for his contri-
butions to an earlier version of this work, and Arthur Choi
for helpful advice and discussions. This work is partially
supported by NSF grants #IIS-1657613, #IIS-1633857 and
DARPA XAI grant #N66001-17-2-4032.

References

[Bache and Lichman, 2013] K. Bache and M. Lichman. UCI
machine learning repository, 2013.

[Bellazzi and Zupan, 2008] Riccardo Bellazzi and Blaz Zu-
pan. Predictive data mining in clinical medicine: current
issues and guidelines. International journal of medical
informatics, 77(2):81–97, 2008.

[Bilgic and Getoor, 2011] Mustafa Bilgic and Lise Getoor.
Value of information lattice: Exploiting probabilistic inde-
pendence for effective feature subset acquisition. Journal
of Artificial Intelligence Research (JAIR), 41:69–95, 2011.

[Boutilier et al., 1996] Craig Boutilier, Nir Friedman, Moises
Goldszmidt, and Daphne Koller. Context-specific indepen-
dence in bayesian networks. In Proceedings of the Twelfth
international conference on Uncertainty in artificial intelli-
gence, pages 115–123. Morgan Kaufmann Publishers Inc.,
1996.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan Dar-
wiche. On probabilistic inference by weighted model count-
ing. Artificial Intelligence, 172(6-7):772–799, 2008.

[Chen et al., 2015] Suming Chen, Arthur Choi, and Adnan
Darwiche. Value of information based on Decision Robust-
ness. In Proceedings of the 29th Conference on Artificial
Intelligence (AAAI), 2015.

[Cheng and Greiner, 1999] Jie Cheng and Russell Greiner.
Comparing bayesian network classifiers. In Proceedings of
the Fifteenth conference on Uncertainty in artificial intelli-
gence, pages 101–108. Morgan Kaufmann Publishers Inc.,
1999.

[Choi et al., 2012] Arthur Choi, Yexiang Xue, and Adnan
Darwiche. Same-Decision Probability: A confidence mea-
sure for threshold-based decisions. International Journal
of Approximate Reasoning (IJAR), 2:1415–1428, 2012.

[Choi et al., 2013] Arthur Choi, Doga Kisa, and Adnan Dar-
wiche. Compiling probabilistic graphical models using



sentential decision diagrams. In European Conference on
Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, pages 121–132. Springer, 2013.

[Choi et al., 2017] YooJung Choi, Adnan Darwiche, and Guy
Van den Broeck. Optimal feature selection for decision
robustness in bayesian networks. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence
(IJCAI), August 2017.

[Darwiche, 2011] Adnan Darwiche. SDD: A new canonical
representation of propositional knowledge bases. In Pro-
ceedings of the 22nd International Joint Conference on
Artificial Intelligence, pages 819–826, 2011.

[Friedman et al., 1997] Nir Friedman, Dan Geiger, and Moi-
ses Goldszmidt. Bayesian network classifiers. Machine
learning, 29(2-3):131–163, 1997.

[Gao and Koller, 2011] Tianshi Gao and Daphne Koller. Ac-
tive classification based on value of classifier. In Advances
in Neural Information Processing Systems, pages 1062–
1070, 2011.

[Gimenez et al., 2014] Francisco J Gimenez, Yirong Wu,
Elizabeth S Burnside, and Daniel L Rubin. A novel method
to assess incompleteness of mammography reports. In
AMIA Annual Symposium Proceedings, volume 2014, page
1758. American Medical Informatics Association, 2014.

[Kira and Rendell, 1992] Kenji Kira and Larry A Rendell.
The feature selection problem: Traditional methods and
a new algorithm. In AAAI, volume 2, pages 129–134, 1992.

[Kolesar, 1967] Peter J Kolesar. A branch and bound algo-
rithm for the knapsack problem. Management science,
13(9):723–735, 1967.

[Kollar and Roy, 2008] Thomas Kollar and Nicholas Roy. Ef-
ficient optimization of information-theoretic exploration in
slam. In AAAI, volume 8, pages 1369–1375, 2008.

[Kononenko, 2001] Igor Kononenko. Machine learning for
medical diagnosis: history, state of the art and perspective.
Artificial Intelligence in medicine, 23(1):89–109, 2001.

[Krause and Guestrin, 2009] Andreas Krause and Carlos
Guestrin. Optimal value of information in graphical models.
Journal of Artificial Intelligence Research (JAIR), 35:557–
591, 2009.

[Laidlaw et al., 1998] David H Laidlaw, Kurt W Fleischer,
and Alan H Barr. Partial-volume bayesian classification of
material mixtures in mr volume data using voxel histograms.
IEEE transactions on medical imaging, 17(1):74–86, 1998.

[Lucas, 2001] Peter Lucas. Expert knowledge and its role in
learning bayesian networks in medicine: an appraisal. In
Conference on Artificial Intelligence in Medicine in Europe,
pages 156–166. Springer, 2001.

[Metsis et al., 2006] Vangelis Metsis, Ion Androutsopoulos,
and Georgios Paliouras. Spam filtering with naive bayes-
which naive bayes? In CEAS, volume 17, pages 28–69,
2006.

[Millán and Pérez-De-La-Cruz, 2002] Eva Millán and
José Luis Pérez-De-La-Cruz. A Bayesian diagnostic

algorithm for student modeling and its evaluation. User
Modeling and User-Adapted Interaction, 12(2-3):281–330,
2002.

[Munie and Shoham, 2008] Michael Munie and Yoav
Shoham. Optimal testing of structured knowledge. In
Proceedings of the 23rd National Conference on Artificial
intelligence, pages 1069–1074, 2008.

[Narendra and Fukunaga, 1977] Patrenahalli M. Narendra
and Keinosuke Fukunaga. A branch and bound algorithm
for feature subset selection. IEEE Transactions on Comput-
ers, 26(9):917–922, 1977.

[Wu et al., 2008] Xindong Wu, Vipin Kumar, J Ross Quinlan,
Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J
McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top
10 algorithms in data mining. Knowledge and information
systems, 14(1):1–37, 2008.

[Yu and Liu, 2004] Lei Yu and Huan Liu. Efficient feature
selection via analysis of relevance and redundancy. Journal
of machine learning research, 5(Oct):1205–1224, 2004.

[Zhang and Ji, 2010] Yongmian Zhang and Qiang Ji. Effi-
cient sensor selection for active information fusion. IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
40(3):719–728, June 2010.

[Zhao et al., 2017] Jieyu Zhao, Tianlu Wang, Mark Yatskar,
Vicente Ordonez, and Kai-Wei Chang. Men also like shop-
ping: Reducing gender bias amplification using corpus-
level constraints. In EMNLP, 2017.

A Proof of Proposition 1

Proof. Let R = F \ F′. The proposition follows from the
definitions of MAA and MPA as follows:

MAAα(F
′) = max

T ′

∑

f ′r

[CT (f
′r) = CT ′(f ′)] · Pr(f ′r)

≤
∑

f ′

max
T ′

∑

r

[CT (f
′r) = CT ′(f ′)] · Pr(f ′r)

=
∑

f ′

max
c

{

∑

r

[CT (f
′r) = c] · Pr(f ′r)

}

(4)

= MPAα(F
′).

Equation 4 comes from the fact that, for a fixed instance f ′,
choosing a threshold T ′ is equivalent to choosing to classify
that instance positively or negatively.



B Proof of Proposition 2

Proof. Let R1 = F \ F1 and R2 = F \ F2. Say G =
F2 \ F1 = R1 \R2. Then,

MPA(F1) =
∑

f1

max
c

{

∑

gr2

[CT (f1gr2) = c] · Pr(f1gr2)

}

(5)

≤
∑

f1g

max
c

{

∑

r2

[CT (f1gr2) = c] · Pr(f1gr2)

}

(6)

= MPA(F2).

Equation 5 is from the assumption that R1 = G ∪R2, and
Equation 6 follows from the fact that sum of maxima is an
upper bound on the maximum of sums.

C Proof of Proposition 3

Proof. We have MAA(F′) ≤ MPA(F′) from Proposition 1.
To show MAA(F′) ≥ MPA(F′) under the independence
assumption, we will use the following claim.

Claim 1 Suppose features F′ and R are independent given
class C. For any instances f ′1 and f ′2, if Pr(c | f ′1) ≥ Pr(c | f ′2),
then at least one of the following must hold:

1.
∑

r [CT (f
′
1r) = c] · Pr(r|f ′1) ≥ 0.5, or

2.
∑

r [CT (f
′
2r) = c] · Pr(r|f ′2) ≥ 0.5.

If inequality 1 is true, we say f ′1 “favors positive classifica-
tion”, and if inequality 2 is true, we say f ′2 “favors negative
classification”.

Above claim states that, if F′ and R are independent given
C and if positive class c is more likely given f ′1 than given f ′2,
then we cannot have f ′1 favor negative classification while f ′2
favor positive classification.

Assuming the claim is true, we can choose a T ′ such that
Q1 < T ′ ≤ Q2, where Q1 = maxf ′ Pr(c | f

′) such that f ′

favors negative class and Q2 = minf ′ Pr(c | f
′) such that f ′

favors positive class. Then, an instance f ′ favors positive class
if and only if Pr(c | f ′) ≥ T ′. Thus, we obtain the following
inequality:

MAA(F′) ≥
∑

f

[CT (f) = CT ′(f ′)] · Pr(f) (7)

=
∑

f ′

max
c

{

∑

r

[CT (f
′r) = c] · Pr(r | f ′)

}

· Pr(f ′) (8)

= MPA(F′)

Equation 7 follows from the definition of MAA as the max-
imum of ECA across different T ′. Equation 8 holds because
T ′ was explicitly constructed such that the trimmed classifier
classifies each instance f ′ into the class that it favors in the
original classifier.

Now we prove the claim by considering two possible cases.
Suppose there exists f ′1 and f ′2 such that Pr(c | f ′1) ≥ Pr(c | f ′2)
but f ′1 favors negative class while f ′2 favors positive class. Since

F′ and R are independent given C, we can write the following
in log-odds domain: logO(c | f ′r) = logO(c) + wf ′ + wr,

where wx = log Pr(x | c)
Pr(x | c) . Then Pr(c | f ′r) ≥ T if and only if

logO(c | f ′r) ≥ λ = log T
1−T

.

Case 1: Pr(c | f ′2) < T . Equivalently, logO(c | f ′2) < λ.
Also, logO(c | f ′2) ≤ logO(c | f ′1) by assumption. Then
∀ r logO(c | f ′2r) ≥ λ =⇒ logO(c | f ′1r) ≥ λ. For such r,
wr > 0 and thus Pr(r | c) > Pr(r | c), which implies:

Pr(r | f ′1) = Pr(r | c) Pr(c | f ′1) + Pr(r | c) Pr(c | f ′1)

= Pr(r | f ′2) + α(Pr(r | c)− Pr(r | c))

≥ Pr(r | f ′2),

where α = Pr(c | f ′1)− Pr(c | f ′2) ≥ 0.
Combining these, we have

∑

r

[CT (f
′
1r) = c] Pr(r | f ′1)

≥
∑

r

[CT (f
′
2r) = c] Pr(r | f ′2) > 0.5,

which is a contradiction of our assumption that f ′1 favors nega-
tive class (i.e.

∑

r [CT (f
′
1r) = c] Pr(r | f ′1) < 0.5).

Case 2: Pr(c | f ′2) ≥ T . Similarly, ∀ r Pr(c | f ′1r) < T
implies Pr(c | f ′2r) < T and Pr(r | c) < Pr(r | c). Thus,

Pr(r | f ′2) = Pr(r | c) Pr(c | f ′2) + Pr(r | c) Pr(c | f ′2)

= Pr(r | f ′1) + α(Pr(r | c)− Pr(r | c))

≥ Pr(r | f ′1).

This leads to the following:

∑

r

[CT (f
′
2r) = c] Pr(r | f ′2)

≥
∑

r

[CT (f
′
1r) = c] Pr(r | f ′1) > 0.5,

which is a contradiction of our assumption that f ′2 favors pos-
itive class and thus

∑

r [CT (f
′
2r) = c] Pr(r | f ′2) < 0.5. This

concludes the proof of the claim and the proposition.

D Relationship to SDP: Details

Here we show the details of how the MPA and ECA can be
expressed in relation to the SDP. First, Proposition 4 simply
follows from the definition of E-SDP and ECA:

SDPC,T,T ′((F \ F′) | F′) =
∑

f

[CT (f) = CT ′(f ′)] · Pr(f)

= ECA((C,F, T ), (C,F′, T ′)).



Next, Equation 2 can be derived as follows:

MPA(F′)

=
∑

f ′

max

(

∑

r

[CT (f
′r) = c] Pr(r | f ′),

∑

r

[CT (f
′r) = c] Pr(r | f ′)

)

· Pr(f ′) (9)

=
∑

f ′

max
(

SDPC,T,0(R | f
′),

1− SDPC,T,0(R | f
′)
)

· Pr(f ′). (10)

Equation 9 is obtained by simply factoring Pr(f ′r) =
Pr(r | f ′) · Pr(f ′) from Definition 4. The first quantity in
the maximizer term of Equation 9 is the expected probability
of positive classification after observing features in R given
that we already observed f ′. This is equal to SDPC,T,0(R | f

′),
the same decision probability given that we always make a
positive classification after f ′ (equivalent to using T ′ = 0).
Thus, we get Equation 10 which defines the MPA using SDP.

Lastly, Equation 3 follows from the connection of ECA to
E-SDP in Proposition 4, rewritten by partitioning the feature
instances f ′ into those that lead to positive classification by
β and those that lead to negative classification. Note that we
can write SDPC,T,0 instead of SDPC,T,T ′ for the first sum
because they equally measure the probability that additional
observations will stick with positive classification. For the sec-
ond sum, we use the complement of SDPC,T,0 to express the
probability that additional observations will lead to negative
classification.


